全等三角形判定方法精讲155


定义:全等三角形是指三边和三内角都相等的两个三角形。

判定方法:三角形全等有三大判定方法,分别是:SSA(两边一角)定理:如果两边的长度和它们的夹角相等,则两三角形全等。

证明:根据三角形全等的定义,只需要证明全等三角形的两个边相等,两个角相等即可。已知两边的长度和它们的夹角相等,由三角形两边夹角定理,相应的两个角也相等。因此,两个三角形全等。SAS(两边一角)定理:如果两边的长度和它们之间的夹角相等,则两三角形全等。

证明:根据三角形全等的定义,只需要证明全等三角形的两个边相等,两个角相等即可。已知两边的长度和它们之间的夹角相等,由三角形两边夹角定理,相应的两个角也相等。因此,两个三角形全等。AAS(两角一边)定理:如果两角和它们之间的边相等,则两三角形全等。

证明:根据三角形全等的定义,只需要证明全等三角形的两个边相等,两个角相等即可。已知两角和它们之间的边相等,由三角形两角一边定理,相应的两边也相等。因此,两个三角形全等。应用举例:
* SSA定理: 已知三角形ABC,AB=4cm,BC=5cm,∠B=30°,求三角形DEF,EF=4cm,FD=5cm,∠D=30°,判断是否全等。
解答: 由SSA定理,两三角形全等。
* SAS定理: 已知三角形PQR,PQ=6cm,QR=7cm,∠PQR=60°,求三角形XYZ,YZ=6cm,ZX=7cm,∠XYZ=60°,判断是否全等。
解答: 由SAS定理,两三角形全等。
* AAS定理: 已知三角形MNP,∠M=45°,∠N=60°,MN=8cm,求三角形RST,∠R=45°,∠S=60°,RS=8cm,判断是否全等。
解答: 由AAS定理,两三角形全等。
注意事项:
* 全等三角形判定定理不能逆用。
* 三角形全等时,对应边和对应的角相等。
* 全等三角形的面积相等,周长也相等。

2025-02-10


上一篇:透析治疗常用提示语大全

下一篇:十大卡车模型排行榜图片及详细解读